Lactose hydrolyzed milk powder: Thermodynamic characterization of the drying process

Tatiana Lopes Fialho, Evandro Martins, Arlan Caldas Pereira Silveira, Carolina Rodrigues de Jesus Silva, Ítalo Tuler Perrone, Pierre Schuck

ABSTRACT

Industrial production of lactose hydrolyzed milk powder (LHMP) remains challenging. Due to the presence of the monosaccharides glucose and galactose, lactose-free powders tend to suffer stickiness, caking, and browning during drying and storage. We sought to find ideal conditions spray dryer inlet air temperature ($\theta_{\text{air,in}}$) and concentrated milk flow rate (m_{CM}) for LHMP production. We tested $\theta_{\text{air,in}}$ settings of 115–160°C and m_{CM} of 0.3–1.5 kg · h$^{-1}$, and also applied mass and energetic balances. LHMP generally exhibited higher mass and energetic losses than the control (milk powder containing lactose), as a consequence of the relatively low dryability of LHMP. For a lab scale spray dryer, the ideal conditions settings for...
LHMP production were $\theta_{\text{air, in}} = 145 \pm 2^\circ\text{C}$ and $m_{\text{CM}} = 1.0 \text{ kg} \cdot \text{h}^{-1}$, taking into account the mass yield and energetic cost (kJ · kg$^{-1}$ of powder) of the process. These ideal conditions are a potential tool for the industrial development of lactose-free dairy powders.

KEYWORDS: Lactose hydrolyzed milk powder, mass and energetic balances, spray drying

Additional information

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grant Number 308223/2015-2], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [Grant Number 5477-15-8], and Fundação de Amparo à Pesquisa do Estado de Minas Gerais [Grant Number APQ-02382-16]

People also read

Article

Functional and reconstitution properties of spray-dried sweetened yogurt powder as influenced by processing conditions

Dibyakanta Seth et al.

International Journal of Food Properties

Volume 20, 2017 - Issue 7

Published online: 20 Nov 2016

Article

Lactose-hydrolyzed milk powder: Physicochemical and technofunctional characterization

Tatiana Lopes Fialho et al.

Drying Technology

Volume 36, 2018 - Issue 14

Published online: 3 Sep 2018

Review article

Recent advances in spray drying relevant to the dairy

Article

Effects of milk pH alteration on casein micelle size and
industry: A comprehensive critical review

Pierre Schuck et al.
Drying Technology
Volume 34, 2016 - Issue 15
Published online: 13 Sep 2016

gelation properties of milk

Hotnida Sinaga et al.
International Journal of Food Properties
Volume 20, 2017 - Issue 1
Published online: 8 Sep 2016

Article
COMPARISON OF GLASS TRANSITION TEMPERATURE AND STICKY POINT TEMPERATURE FOR SKIM MILK POWDER

L. Ozmen et al.
Drying Technology
Volume 20, 2002 - Issue 6
Published online: 11 Dec 2006

Article
Thermodynamic characterization of single-stage spray dryers: Mass and energy balances for milk drying

Cleuber Raimundo da Silva et al.
Drying Technology
Volume 35, 2017 - Issue 15
Published online: 25 Jul 2017

Article
Milk Powders Ageing: Effect on Physical and Functional Properties

MARIE E. C. THOMAS et al.
Critical Reviews in Food Science and Nutrition
Volume 44, 2004 - Issue 5
Published online: 10 Aug 2010

Article
An Investigation of Milk Powders Produced by a Laboratory-Scale Spray Dryer

J. J. Nijdam et al.
Drying Technology
Volume 23, 2005 - Issue 5
Published online: 6 Feb 2007
